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ABSTRACT 

The set of polynomial identities of a ring A is considered, as well as some 
types of minimal identities. The change which occurs in these identities upon 
passage to related rings is then studied. 

In this paper we are concerned with the set of  all polynomial identities of  a ring. 

We call two rings equivalent if their sets of identities (over some fixed domain of  

operators) coincide. It is first shown that the tensor product preserves this equiva- 

lence, and in particular the matrix rings over equivalent rings are equivalent. 

We then consider two types of  "minimal"  identities (not necessarily of  minimal 

degree) and show that in some respects all rings with identities behave like matrix 

rings. As a corollary, we get the converse of  a recent theorem by Procesi and 

Small [5]. Finally, we go down from A. to Ak with k < n, A an arbitrary ring, 

and present a method of reducing identities in this process. 

1. The set of  identities of  related rings. Let ~ be a fixed domain of  operators 

which we assume to be a commutative ring with unity. Polynomial identities as 

well as tensor products and homomorphisms are understood throughout to be 

taken over fL Every ring considered is assumed to be an f~-algebra and to satisfy 

a polynomial identity, and we assume, moreover, that at least one of  the co- 

efficients of tthis identity is equal to 1. This assumption persists in homomorphic 

images, and is not very restrictive as most of the identities one encounters in 

applications have only 1 and - 1 for their coefficients. Also it is known ([2]) that 

if ~ is integral domain then any PI-ring A, for which ~a = 0 with ~ 6 ~, a ~ A 

implies ~ = 0 or a = 0, satisfies such an identity (namely, a power of  the standard 
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identity).* We denote the set of  identities of  a ring A by I(A), and we say that 

two rings A and B are equivalent (over f2) if I ( A ) =  I(B). We write this as 

A - B. Epi- and monomorphisms will be written as ~ and >~ respectively. 

The following is the main theorem of this section. 

THEOREM 1. Assume that f~ is a field. I f  A - A' and B =- B' then A ® B 

- A ' ® B ' .  

Note that this theorem shows that the relation _--_ is actually a congruence 

relative to the tensor product, and therefore the equivalence classes of  f~-algebras 

form a commutative semigroup with unity. 

For the proof  we use the universal rings introduced by Amitsur. See [2] for 

details. Using Amitsur 's  technique we first give a simple criterion for equivalence, 

which does not use the notion of identities. For a ring A and a set I we write A ~ 

for the / -d i rec t  power of  A, i.e. the direct product of  A with itself I times. 

LEMMA 2. Let A be any ring, U the universal ring of  A. Then for some set 
I we have the diagram 

At+--< U-~A .  

Conversely, i f  for some rings A and B and a set I we have a diagram 

then A -- B. 

At,<--< B->>A, 

PROOF. L e t ~  be the free ring over the given domain of operators f2,' generated 

by a sufficiently large set of  noncommutative indeterminates, so that U = ~/ I (A) .  

I f  ~b ::~ --~ A is any epimorphism, then ker ~b _ I(A) and therefore there is a unique 

map/~:  U ~ A such that the following diagram commutes:  

~" > U  

+\, 
A 

Let I be the set of  all epimorphisms qS:~ ~ A .  For u E U we define i(u) to be 

the function in A z such that i(u)(qS) = qS(u) for all ~b ~ L Suppose i(u) = 0 for some 

u ~ U  and let u = f = f + I ( A )  with f~o~. Then for every qS~I we have ~b(f) 

* The restriction appearing in [2], i.e. aA = 0 implies a = 0, is actualy weaker, but this 
does not seem to suffice for the proof of Lemma 2 there and its consequences. 



whence A ® B -  U ® B .  

A ® B - A ' ® B .  In the 

A ® B - A ' ® B ' .  
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= ~(u) = 0 so that f E  ( ' ]~iker~b = I(A), whence u = f =  0. Thus i is a mono- 

morphism and so, all the other parts of the Lemma being trivial, the proof is 

completed. 

Proof of Theorem I. Let U be the common universal ring of A and A', 

so that in particular A - A' -- U, and consider the diagram 

AI~-< U ~ A .  

This diagram, upon tensoring by B, induces the diagram 

A I ® B ~ <  U ® B - - - ~ A ® B ,  

and since A t ®  B is naturaly embedded in (A ® B) l, also the diagram 

(A ® B) x~-< U ® B - ~ A ® B ,  

Of course we also have A' ® B  =_ U ® B ,  and so 

same way A ' ® B - A ' ® B '  and we conclude that 

Iff~ is not assumed to be a field, we can still pass from the diagram A ~ <  U--~A 

in the proof of Theorem 1 to the diagram 

(Ak) r : (A1)k ~< Uk--~A:, 

where A: denotes the matrix ring of order k over A. Hence we have 

THEOREM 3. For arbitrary rings A and B, A =_ B implies A: =- B k. 

There is an alternative, straightforward method to prove the results of this 

section, which has some independent interest. We demonstrate this method by 

reproving Theorem 3. Suppose A -= B over f~, and let f ( x  t, ...,xr) be an identity 

of A k. Let f)[x] be the free ring generated over f~ by an infinite number of non- 

commutative indeterminates, and consider in f~[x]k the matrices of indeterminates 

X (~) = (xi~°), v = 1,..., r. We substitute these matrices in f and write 

f ( X  (~), . . . ,  X (o) = 

) l , (x)  . . .  fig(:)  ] 

LLl(x) Lk(x) J 

where the fu(x)  are polynomials over ~ in the l ' k  2 indeterminates ~.(.v) If  we " ' l J  ° 

specialize in this relation x ~ ) =  a .~y),~ ~A, then since f is an identity for Ak, the 
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lefthand side vanishes. Therefore the righthand side also vanishes and we may 

conclude that the fij(x) are identities of A. Since A - B, fii(x) are identities 

of  B as well. But then reversing the process, we see that every substitution 

,~ = v,j e B annihilates the righthand side and so also the lefthand side of the 

above relation. Since every substitution from BR in f is of this form, it follows 

that f is an identity of Bk. 

I f  f~ is a field, one can similarly prove that A = A' implies A ® B - A' ® B 

(from which Theorem 1 follows) by replacing ~q[x]k in the present proof by 

~[x] ® B. 
We remark finaly that besides the equivalence relation - ,  one can also define 

a preordering on rings by declaring A < B whenever I(A) D_ I(B). All the ,results 

of  this section, and some of the next, generalize easily to this case. In particular, 

if fl  is a field, this relation is preserved by tensor products and thus it induces 

a partial ordering on the semigroup of equivalence classes of  algebras modulo - - ,  

It is clear also that the relation __< is preserved by #* (see below). 

2. Minimal identities of related rings. In what follows we assume for 

convenience that all our rings posses a luni t  element, though this is not 

necessary. Let Sk(X 1, "",Xk) be the standard identity of degree k, and note that 

if A satisfies Sk with k minimal, then k must be even. For if k were odd, then 

Sk(Xl,. . . ,Xk_:,l) = Sk_l(Xl, ." ,Xk_O and thus k would not be minimal. The 

same remark holds for powers of standard identities. We write /t(A) = n if A 

satisfies s2. and no sk with k < 2n. If  A satisfies no standard identity we write 

#(A) = ~ .  We write in addition #*(A) = n if A satisfies a power of s2,, and no 

power of  s k with k < 2n. As we shall see later (Corollary 14), our assumption on 

the identity satisfied by A implies that A satisfies a power of some standard identity, 

so that #*(A) is always finite. Finally, we call a ring A M.-ring if  A - C~ over 

for some commutative f~-algebra C, and M-ring if A is an M-ring for some n. 

The theorem of Amitsur and Levitzki [1] states that #(C,) = n for a commutative 

ring C, and from this it clearly follows that 

(*) if A = C, then ~(Ak) = k#(A). 

Our aim in this section is to generalize (*) in several directions. First we note that 

(*) can be taken to mean that for A = C., ~t(A ® f~k) =/~(A) • #(f~k)- We generalize 

this in the following 
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THEOREM 4. Assume that ~ is a field and let A and B be M,- and Mk-algebras. 

Then A ® B is M.k-algebra and I;(A ® B) = #(A) • #(B). 

PROOF. Since A = C , , a n d  B Z C k ,  we have A ® B = C , ® C ~ - - - ( C ® C ' ) , k ,  

so that A ® B is an M,k-algebra. The rest of  the theorem is now trivial. 

COROLLARY 5. Let f~ be a fiehl and let S be the semigroup of equivalence 

classes of algebras modulo the relation =-. Then T = {[A] ~ S I A  is an M- 

algebra} is a subsemigroup and # induces an homomorphism of T onto the 

multiplicative semigroup of the natural numbers. 

An analogous generalization of (*) follows from Theorem 3. 

COROLLARY 6. It A is an M,,-ring then A k is an M,k-ring and #(Ak) = k#(A). 

The class of  M-rings contains many rings besides matrix rings over com- 

mutative rings, for we have the following 

LEMMA 7. Any prime ring A is an M-ring. 

PROOF. The proof  follows immediately from [3]. Recall that A satisfies an 

identity having 1 for one of its coefficients, and this identity is nontrivial in the 

sense of  [3]. 

I f  A = [GF(q)]k is a matrix ring over a finite field then, trivially, A is an Mk-ring 

taking C = GF(q). Suppose now that A is not of the form [GF(q)] k and let Q be 

its ring of quotients. Then it is shown in [3] that for every commutative ring K, 

A - - Q -  Q @ K over f~, where the tensor product is arbitrary. I f  in particular 

we choose for K a splitting field of  Q, and form the tensor product over the center 

of  Q, we obtain A ~ K,, i.e. A is an M-ring. (One checks easily that in bothl cases C 

and K are indeed f~-algebras.) 

We remark that if one puts the further restriction that f~ be an infinite integral 

domain and that c~a = 0 with c~ c f~ a c A implies c~ = 0 or a = 0, then Lemma 7 

can be extended to semiprime rings. This follows from Theorems 2 and 6 of  [2]. 

The converse of  Lemma 7 is false, as demonstrated by the following 

example of an M-ring which has nilpotent ideals. Let F be an infinite field and let 

A = t~,fl ~ F  . Then A is a commutative ring with unity embedding F, 

a n d N = { ( ~  flOO) I f lEF} is anilpotent ideal of A. By Lemma 6 of [2] A - F  

and by our Theorem 3 A k - F k for every k __> 1. 
Thus A k is an Mk-algebra with unity, having Nk as a nilpotent ideal. Moreover, 
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Amitsur has given an example of  an M-ring which is not embeddable in C, with C 

commutative [6]. 

We now take over #* as another generalization of (*). Our main result in this 

direction is 

THEOREM 8. For any  ring A #*(Ak) = kl,*(A). 

REMARK. The inequality " < "  follows from the theorem of Procesi and 

Small [5]. 

To prove Theorem 8, we need two lemmas. 

LEMMA 9. I f  A is an), M - r i n g  then #*(A) = p(A). 

PROOF. I t  is clearly enough to prove the result for A = C,, C commutative. 

Since we know that #(C,,) = n and #*(C,) < #(C,),  we have only to show that if 

k < n then C n satisfies no power of S2k(X 1, ..., X2k). Indeed, let eij be n 2 matrix 

units and put 

Q = S2k(e12, e23, e34, "" ", ekk+ 1, eg+ lk, "", e43, e32, e21). 

We first take a look at any non-zero term of Q, which must have the fo rm 

ei,i2%i~ei~z4...ei,~,÷l, and call il and i,+ 1 "external"  indices in this term and 

all the rest " internal" .  I t  is now seen that each internal index appears in this 

term an even number of times, whereas the external indices, iunless they are 

equal, have an odd number of appearances. Next we set i~ = 1 and observe that 

this yields a single non-zero term for Q, namely e 12e23""ekk + leg + lk"" e32e21 = el 1 • 

By the above considerations (or by actual counting) we see that each index has 

here an even number of appearances, and therefore the same." is true for every 

term of Q. Hence every other non-zero term must have its external indices equal, 

and thus has the value e ,  for some i > 1. I t  follows that the matrix Q is diagonal, 

and as it has 1 in its uppermost left corner, it is not nilpotent. This shows that no 

power of  S2k is an identity for C,, hence the proof  is completed. 

The next lemma shows that a semiprime ring, while it may not be an M-ring, 

still inherits f rom its prime images two important properties of  M-rings. 

LEMMA 10. I f  A has no non-zero nilpotent ideals then # ( A k ) =  k#(A)  and 

#*(A) = #(A). 

PROOF. First, if A is prime then by Lemma 7 A is an M-ring, and the two 

assertion follow from Corollary 6 and Lemma 9. I f  now A is any ring having no 

non-zero nilpotent ideals then A is a subdirect product of  prime rings A (0 and 

thus also A k is a subdirect product of  Ark i). Since A satisfies a nontrivial identity 

which remains nontriviaI in each of the A (o, the above results are applicable. 
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It also follows that the #(A (i)) are bounded. Letting r be an index such that 

#(A (i)) < #(A (')) for every i, we have #(A) - = -  lt(A(r)). Since lt(A~k i)) = k#(A (i)) we 

also have #(,4(~ ) ) < IL(AII ~)) and so ~l(A k) = p(A~ ~)) = k#(A ~')) = kp(A), 

which is our first assertion. Finally, A (r) is a homomorphic image of  A so that 

#*(A (')) < #*(A), whence #(A) = #(A (r)) = tt*(A (~)) ~ #*(A). As the opposite 

inequality IL*(A) <= it(A) is obvious, this completes the proof of the lemma. 

PROOF OF THEOREM 8. Let U be the ul~iversal ring of A. Then A-= U and by 

Theorem 3 Ak -- U~, so that it is enough to prove the theorem for U. If  N is the 

nilradical of U then U/N has no nonzero nilpotent ideals and, since U satisfies 

an identity, N is locally nilpotent ([4]). Since (U/N)~, ~ U~,/Nk has also no nonzero 

nilpotet ideals, we have by Lemma 10 

/~*(Ut,/Nk) = #*((U/N)k) = #((U/N)k) ---- k u ( U / N ) =  k#*(U/N).  

The proof  will thus be completed if we show that #*(Uk)= #*(Uk/Nk) and 

I~*(U) = #*(U/N).  Let o~ -- ~[.\-~, xz, ...] be the free ring over ~ in the x;, and let 

U = ~ / T  = ~[.~1, if2, ""],  where T is some T-ideal in J and -vi = xl + T. Suppose 

U/N satisfies sh,, SO that in particular sh,(:~, ".., :7:,,) ~ N. Since N is nil there is a t 

such that St,(YCl, . . . , ~ , ) =  0. If  u 1, --.,u, are arbitrary elements of U there is a 
t homomorphism of U into U which maps .9~ ~ ui and so s,(ul, , u , ) =  0. This 

shows that s, t is an identity for U and so tl*(U) < t~*(U/N). Since the opposite 

inequality is obvious, the equality follows. The equality #*(Uk)= #*(Uk/Nk) is 

proved similarly using the fact that since N is locally nilpotent, Nk is locally nil- 

potent and in particular nil. Here we use instead of ~j,...,.~,, n generic matrices 

)~(~) = (ff~)) whose elements are taken from {.~,,.v2, ""}. The proof of Theorem 8 

is now completed. 

COROLLARY 1I. Let AI~ satisfy a power of s2n with n minimal .  Then k i n  and 

A satisfies a power of s2,~/i,. 
This is the converse of the theorem of Procesi and Small [5]. 

COROLLARY 12. I f  A k is an M,-r ing  then k] n. 

Indeed, #*(A k) --= p(At,) -- n and the conclusion now follows from Corollary 11. 

COROLLARY 13. Assume that f2 is a field. I f  A is an M,-algebra and B any 

algebra then A ® B - B, and #*(A ® B) = ¢~*(A) • #*(B). 

The first statement follows from Theorem 1, and from this one has by Theorem 8 

#*(A ® B) = #*(B,,) = nl**(B) = #*(A) • #*(B). 

The following was proved in [2] under different conditions. 
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COROLLARY 14. Any ring satisfying an idntity with 1 as one of its coefficients, 

satisfies a power of a standard identity. 

PROOF. It is enough to prove the result for a universal ring U. If N is the nil- 

radical of U, then U/N satisfies a standard identity and, as was shown in the 

proof of Theorem 8, U satisfies a power of it. 

We close this section with an example, showing that in general there is no 

connection between/~ and/~'*, other than the trivial relation #*(A) < #(A). Let f~ 

be a field of characteristic 0, V an infinite dimensional vector space over f~ with 

basis {ei,ez,e3, ..-}, and let A be the Grassman algebra based on V. Then A has 

a basis consisting of  1 and the products e~e~, -.. % with it < i2 < ' "  < it, and it is 

well known ([4], p. 260) that A satisfies the identity [[xy]z] but no standard 

identity. Now let A ~") be the subalgebra of A generated by {1, el ,- . . ,  e2,,-2}. We 

assert that /~(A (")) = n while p*(A (")) = 1. Indeed, each product e~l..-e,,~ in 

which two of the e's are equal must vanish, whence it easily follows that A ~") sa- 

tisfies s2,. Since on the other hand we have s2,- ~)t, e tc . . ,  e2,_ 2) = s2,,- 2(el, '"e2,,- 2) 

= ( 2 n - 2 ) ! e ~ . . . e 2 , _  2 ~ 0, the first assertion follows. In order to prove the 

second assertion we turn again to the second ring of A(,,~ and its nilradical N. 

Each prime homomorphic image of U satisfies the identity of  degree 3 

[[xy]z] and, being an M-ring, it therefore satisfies s 2 (i.e. it is commutative). 

Thus U/N satisfies s2 and so U satisfies a power of it, that is, #*(U) = #*(A) = 1. 

Note that while t~* is kept fixed,/~ can be made arbitrarily large or co. 

Reducting Identities. In this section we consider the following "downwards" 

problem: Assuming that Ak satisfies a given set of identities, what can we say 

about the identities of A? Theorem 8 solves this problem for the case of powers 

of standard identities, but beyond this point the above methods do not] seem to 

apply. For instance, if A~ is an M,-ring we do not know whether A is an M-ring. 

(This would imply that A is an M,,/k-ring.) So we turn to more down-to-earth 

methods, which naturally involve some amount of calculations. We assume that 

Ak satisfies an identity and show two methods of reducing this identity (in two 

different senses) in going down to A. e o wilt denote the matrix unit with 1 in 

its (i,j)-th place and 0 elsewhere, in what follows A will always be a ring with a 

unit element. 

The first reduction theorem is the following 
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THEOREM 15. I f  A k satisfies an identity of degree n then Ak-1 satisfies an 

identity of degree n - 2. 

REMARK. The theorem still holds if  instead of assuming unit element we only 

assume that A contains a regular element. 

PROOF. By the well known linearization process we may assumee that Ak 

satisfies a homogeneous multilinear identity f ( x~ , . . . , x , ) .  Write f ( x ~ , . . . , x , )  

= g ( x l , ' " , X n _ 2 ) X n _ l X  n - 1 - h ( x l , . . . , x , )  where g ( x l , . . . , x . _ 2 ) x . _ l x ,  is the sum of 

all the terms in f which end with x._ ~x,. By suitably renaming the x~'s if necessary, 

we may suppose that g ¢ 0. Note for later reference that if we happened to start 

with f = s,(xl ,  . . . , x , )  we would get in this process g = s , - z (x l ,  . . . ,X,-z).  

We now intend to show that g(x~, " . ' ,x , -2)  is an identity for Ak-1. Since g is 

multilinear it will suffice to show that g(a tE2 , . . . , a , _ zE ,_2 )=O,  for every 

substitution of al s A and El matrix units of  order (k - 1) x (k - 1). The E~ will 

also be considered as k x k-matrices, by adding k-th row and column of  zeroes, 

= ~,~,j = 1 bi~e~i with but note that we can then still write g ( a l E l , . . . , a . _ z E . _  2) k-1 

bii ~ A. 

Consider now the following substitution from Ak in the identity f ( x l ,  ..., x,): 

Q =_f(a2E I,...,a._2E,,_2,etk.,e~k), where i < l < k is arbitrary. Since in each 

monomial  of  h(x 2 "'" x.] one of x 2 , '" ,  x ,_ 2 appears to the right of  one of x,_ 2, x. it 

is clear that h(x t . . ,  x,)  vlanishes under the above substitution, and we have: 

( k-1 ) k--~ 
0 = Q = g(a iE i, . . . , a n _ 2 E n _ z ) e l k e k k  : ~ biyelj ezk = Y, bueik. 

\ i , j = l  / i = 1  

From this we see that bn = 0 for i = 1, ..., k - 1 and since l was arbitrary, also for 

l = 1, ..., k - 1. Thus g(alE 2, ..., a,,_2E,_2) = Y~b~jei i = 0, which completes the 

proof  of  the theorem. 

By a remark we made during the proof  of  Theorem 15 we have 

COROLLARY 16. I f  A k satisfies S2n then A k_ 1 satisfies s2(.-i)  and so A satisfies 

S2(n-k+ 2)" 

COROLLARY 17. I f  AR satisfies a standard identity then p(A) < II(Ak)  --  k -}- 1. 

A special case of  Corollary 16 yields a converse to the Amitsur-Levitzki 

theorem [1] : 

COROLARRV 18. I f  A .  satisfies sz, then A is commutative. 

In what follows we shall sometimes write for short s,(x 1, . . . , x . ) =  [xl ,  . . . ,x , ] .  
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LEMMA 19. Let P =  [aleii,...,aneii, teu+l, blE1,...,b~E,], where the Ej are 

matrix units whose both indices are greater than i, and aj, t, b j~A .  Then 

P = [ a i , ' " ,  a,,]teu+ i [ b i E , , ' " ,  b ,E, ] .  

PROOF. Let Q = [a~,.-.,a,]tei~+l[biE~,...,b~E,]. The only nonzero t~rms of  

P are among  those in which the ajei¢ appear  first in some order, then te,+~ and 

finally the bjEj in some order. Conversely, each such an arrangement  gives rise 

to some term of  P. Thus,  in comput ing  P, it is sufficient to consider those per- 

mutat ions which are a p roduc t  of  a permutat ion o f  the aje~ and a permutat ion 

o f  the bjEj. The terms of  P thus obtained are clearly in one-to-one correspondence 

with the terms of  Q, and corresponding terms are equal and appear  with the sign 

in their respective sums. Hence the equality o f  P and Q is established. 

We conclude with a second reduction theorem. 

k where n = [ m ]  THEOREM 20. I f  At satisfies Sm then A satisfies s. [ k J" 

PROOF. Write m = nk + r with 0 -< r _<_ k - 1. Since A k satisfies s,,, it certainly 

satisfies S,k+k-1, and so we have for all aij., tz ~A, 

P ~ [ a l l e l , ,  . . . ,  a l n e l l ,  11 el2,  a21e22, . . . ,  a2ne22, t2e23, -.., t k _ l e k _ l k  , ak ,ekk ,  " ' ,  

ak,,ekk ] = O. 

On the other hand, applying Lemma 19 several times in succession we get: 

P -- [ a , , ,  ..., aa , ] t le12[a2,  , ..., az, ] t2e23.. . tk_le1,_,k[akl ,  " " ,ek, ]  

= [ a , , ,  ..., a , , ] t ~ [a2 , ,  ..., a2 , ] t  2 ... t k_ , [ak , ,  " " ,  ak,]elk, 

since elements of  A commute  with the ei r Thus A satisfies the identity 

[ x ,  1, . . . , - ,1 , ]  y ,  [ x2 , ,  . .-,  x2, ,]y2 ... . . . ,  xk,] ,  

which upon specializing Yl . . . . .  Yk--~ = l and x l j  . . . . .  Xki =Xi  gives the 

identity [x~, ..., x,] k . 
Note  that if Ag satisfies s,,, then 21~*(A k) < tt7 and by Theorem 8 we have 

2#*(A) < [m/k] = 11. Hence A satisfies a power of  sr with r < n, whence it can be 

easily shown that  A satisfies a power of  s,,. Thus  the novelty in Theorem 20 is 

only in its specifying this power. 
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