POLYNOMIAL IDENTITIES OF RELATED RINGS

BY
URI LERON AND AMITAI VAPNE*

ABSTRACT

The set of polynomial identities of a ring A is considered, as well as some
types of minimal identities. The change which occurs in these identities upon
passage to related rings is then studied.

In this paper we are concerned with the set of all polynomial identities of a ring.
We call two rings equivalent if their sets of identities (over some fixed domain of
operators) coincide. It is first shown that the tensor product preserves this equiva-
lence, and in particular the matrix rings over equivalent rings are equivalent.
We then consider two types of ““‘minimal’’ identities (not necessarily of minimal
degree) and show that in some respects all rings with identities behave like matrix
rings. As a corollary, we get the converse of a recent theorem by Procesi and
Small [5]. Finally, we go down from 4, to A4, with k <n, A an arbitrary ring,
and present a method of reducing identities in this process.

1. The set of identities of related rings. Let Q be a fixed domain of operators
which we assume to be a commutative ring with unity. Polynomial identities as
well as tensor products and homomorphisms are understood throughout to be
taken over Q. Every ring considered is assumed to be an Q-algebra and to satisfy

a polynomial identity, and we assume, moreover, that at least one of the co-
efficients of ithis identity is equal to 1. This assumption persists in homomorphic

images, and is not very restrictive as most of the identities one encounters in
applications have only 1 and —1 for their coefficients. Also it is known ([2]) that
if Q is integral domain then any Pl-ring A4, for which aa =0 with aeQ, ac 4

implies & = 0 or a = 0, satisfies such an identity (namely, a power of the standard
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identity).¥ We denote the set of identities of a ring A by I(4), and we say that

two rings A and B are equivalent (over Q) if I(4) = I(B). We write this as

A = B. Epi- and monomorphisms will be written as - and >— respectively.
The following is the main theorem of this section.

THEOREM 1. Assume that Qis a field. If A=A" and B=B' then AQ B
=A'®B’.

Note that this theorem shows that the relation = is actually a congruence
relative to the tensor product, and therefore the equivalence classes of Q-algebras
form a commutative semigroup with unity.

For the proof we use the universal rings introduced by Amitsur. See [2] for
details. Using Amitsur’s technique we first give a simple criterion for equivalence,
which does not use the notion of identities. For a ring 4 and a set I we write A’
for the I-direct power of A, i.e. the direct product of 4 with itself I times,

LeMMA 2. Let A be any ring, U the universal ring of A. Then for some set
I we have the diagram

AIe—< U->»A.

Conversely, if for some rings A and B and a set I we have a diagram

Al ««B-»A4,
then A = B.

ProOOF. Let%F be the free ring over the given domain of operators Q," generated
by a sufficiently large set of noncommutative indeterminates, so that U = %#/I(4).
If ¢:# -» A is any epimorphism, then ker ¢ = I(4) and therefore there is a unique
map ¢: U -» A such that the following diagram commutes:

F—>U

o\
A

Let I be the set of all epimorphisms ¢:%# -»A. For ue U we define i(u) to be
the function in A *such that i(u)(¢) = ¢(u) for all ¢ € I. Suppose i(u) = 0 for some
ueU and let u = f=f+ I(A) with fe# Then for every ¢l we have ¢(f)

* The restriction appearing in [2], i.e. a4 = 0 implies a = 0, is actualy weaker, but this
does not seem to suffice for the proof of Lemma 2 there and its consequences.
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= ¢(u) = 0 so that fe [ )4 ker¢ = I(4), whence u = f=0. Thus i is a mono-
morphism and so, all the other parts of the Lemma being trivial, the proof is
completed.

Proof of Theorem 1. Let U be the common universal ring of A and A4’,
so that in particular 4 = A’ = U, and consider the diagram

Al U»4.
This diagram, upon tensoring by B, induces the diagram
A'®@ B« U®B-»A® B,
and since A" ® B is naturaly embedded in (4 ® B)', also the diagram
(A®B)«« U®B-»A® B,

whence AQ B=U® B. Of course we also have '@ B=U® B, and so
A®B=A"®B. In the same way A" ® B=A4'® B’ and we conclude that
AR B=A4"®B'.

If Q is not assumed to be a field, we can still pass from the diagram A"« U-»4
in the proof of Theorem 1 to the diagram

(A4 = (A «< U, » Ay,
where A, denotes the matrix ring of order k over A. Hence we have
THEOREM 3. For arbitrary rings A and B, A = B implies A, = B,.

There is an alternative, strajghtforward method to prove the results of this
section, which has some independent interest. We demonstrate this method by
reproving Theorem 3. Suppose 4 = B over Q, and let f(x,---,x,) be an identity
of A;. Let Q[x] be the free ring generated over € by an infinite number of non-
commutative indeterminates, and consider in Q[ x], the matrices of indeterminates

X = (x), v=1,--,r. We substitute these matrices in f and write
fi(x) - fudx)
SEXD, e, X0y = . € Q[x],
Lfa(x) - fkk'(x)

where the f;(x) are polynomials over Q in the rk? indeterminates x,—f-”). If we
specialize in this relation x{) = a{)’ € 4, then since f is an identity for A,, the
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lefthand side vanishes. Therefore the righthand side also vanishes and we may
conclude that the f;(x) are identities of A. Since A= B, f;(x) are identities
of B as well. But then reversing the process, we see that every substitution
x{? = b{}’ € B annihilates the righthand side and so also the lefthand side of the
above relation. Since every substitution from B, in f is of this form, it follows
that f is an identity of B,.

If Q is a field, one can similarly prove that A=A’ implies AQB=A"® B
(from which Theorem 1 follows) by replacing Q[x]; in the present proof by
O[x] ® B.

We remark finaly that besides the equivalence relation =, one can also define
a preordering on rings by declaring A < B whenever I(4) 2 I(B). All the results
of this section, and some of the next, generalize easily to this case. In particular,
if Q is a field, this relation is preserved by tensor products and thus it induces
a partial ordering on the semigroup of equivalence classes of algebras modulo = .
It is clear also that the relation < is preserved by p* (see below).

2. Minimal identities of related rings. In what follows we assume for
convenience that all our rings posses a|unit eclement, though this is not
necessary. Let s,(x,,---.x,) be the standard identity of degree k, and note that
if A satisfies s, with k minimal, then k must be even. For if k were odd, then
(X1, s Xg—1, 1) = 85, —1(X1. -, X, ;) and thus k would not be minimal. The
same remark holds for powers of standard identities. We write u(4)=n if A4
satisfies s,, and no s, with k < 2n. If A4 satisfies no standard identity we write
w(A) = co. We write in addition p*(A) = n if A satisfies a power of s5,,, and no
power of s, with k < 2n. As we shall see later (Corollary 14), our assumption on
the identity satisfied by 4 implies that A satisfies a power of some standard identity,
so that u*(A) is always finite. Finally, we call a ring 4 M,-ring if A = C, over Q
for some commutative Q-algebra C, and M-ring if 4 is an M-ring for some n.

The theorem of Amitsur and Levitzki [1] states that y(C,) = n for a commutative
ring C, and from this it clearly follows that

(*) if A= C, then u(4,) = ku(A).

Our aim in this section is to generalize (*) in several directions. First we note that
(*) can be taken to mean that for 4 = C,, p(4 ® Q) = u(4) - u(€). We generalize
this in the following
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THEOREM 4. Assumethat Qisa field and let Aand B be M- and M,-algebras.
Then AQ® B is M-algebra and (A ® B) = p(A) - u(B).

Proor. Since A=C, and B=C;, we have AQB=C,®C, = (C® C)p.
so that A ® B is an M,,-algebra. The rest of the theorem is now trivial.

COROLLARY 5. Let Q be a field and let S be the semigroup of equivalence
classes of algebras modulo the relation =. Then T = {[A]eSlA is an M-
algebra} is a subsemigroup and p induces an homomorphism of T onto the

multiplicative semigroup of the natural numbers.
An analogous generalization of (*) follows from Theorem 3.
COROLLARY 6. [f A is an M,-ring then A, is an M -ring and p(A,) = ku(4).

The class of M-rings contains many rings besides matrix rings over com-

mutative rings, for we have the following
LemMmA 7. Any prime ring A is an M-ring.

Proor. The proof follows immediately from [3]. Recall that A satisfies an
identity having 1 for one of its coefficients, and this identity is nontrivial in the
sense of [3].

If A = [GF(q)], is a matrix ring over a finite field then, trivially, 4 is an M,-ring
taking C = GF(g). Suppose now that A is not of the form [GF(q)], and let Q be
its ring of quotients. Then it is shown in [3] that for every commutative ring K,
A=0=0®K over Q, where the tensor product is arbitrary. If in particular
we choose for K a splitting field of Q, and form the tensor product over the center
of g, we obtain A = K,,i.e. A is an M-ring. {One checks easily that in both: cases C
and K are indeed Q-algebras.)

We remark that if one puts the further restriction that Q be an infinite integral
domain and that aa =0 with «€Q ae 4 implies « =0 or a =0, then Lemma 7
can be extended to semiprime rings. This follows from Theorems 2 and 6 of [2].

The converse of Lemma 7 is false, as demonstrated by the following
example of an M-ring which has nilpotent ideals. Let Fbe an infinite field and let

A= {(g g) loc,ﬁ er } Then A4 is a commutative ring with unity embedding F,

00
and by our Theorem 3 4, = F, for every k = 1.
Thus A, is an M,-aigebra with unity, having N, as a nilpotent ideal. Moreover,

and N = {(0 ﬁ) IﬁEF} is a nilpotent ideal of 4. By Lemma 6 of [2] A= F
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Amitsur has given an example of an M-ring which is not embeddable in C, with C
commutative [6].

We now take over u* as another generalization of (*). Our main result in this
direction is

THEOREM 8. For any ring A p*(Ag) = ki*(A).

ReMARK. The inequality ‘< follows from the theorem of Procesi and
Small [5].

To prove Theorem 8, we need two lemmas.

LemMMA 9. If A is any M-ring then u*(A) = u(A).

Proor. 1t is clearly enough to prove the result for 4 = C,, C commutative.
Since we know that u(C,) = n and p*(C,) < u(C,), we have only to show that if
k < n then C, satisfies no power of s;(x;, -+, x,,). Indeed, let e; be n? matrix
units and put

Q = 531{€12,€23, €345 """ €kt 15 Cict 11> "> €235 €32, €21)-

We first take a look at any non-zero term of @, which must have the form

e e

e €

ipipe 12

i 11205 Cinis " and call i; and i,,, “‘external” indices in this term and
all the rest ““internal’. 1t is now seen that each internal index appears in this
term an even number of times, whereas the external indices, ;unless they are
equal, have an odd number of appearances. Next we set i; = 1 and observe that
this yields a single non-zero term for Q, namely ey;e,3 €+ 1854+ 1%"""€32€21 = €11 -
By the above considerations (or by actual counting) we see that each index has
here an even number of appearances, and therefore the same: is true for every
term of Q. Hence every other non-zero term must have its external indices equal,
and thus has the value ¢;; for some i > 1. It follows that the matrix Q is diagonal,
and as it has 1 in its uppermost left corner, it is not nilpotent. This shows that no
power of s,, is an identity for C,, hence the proof is completed.

The next lemma shows that a semiprime ring, while it may not be an M-ring,

still inherits from its prime images two important properties of M-rings.

Lemma 10. If A has no non-zero nilpotent ideals then p(A,) = ku(A) and
p¥(A) = u(A4).

Proor. First, if A is prime then by Lemma 7 A4 is an M-ring, and the two
assertion follow from Corollary 6 and Lemma 9. If now A is any ring having no
non-zero nilpotent ideals then A is a subdirect product of prime rings 4 and
thus also 4, is a subdirect product of A{". Since A satisfies a nontrivial identity
which remains nontrivial in each of the A, the above results are applicable.
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It also follows that the u(A4”) are bounded. Letting r be an index such that
1(AD) £ u(A®) for every i, we have u(A4) = u(4™). Since pu(4) = ku(4A®) we
also have p(AP) £ (AP and so u(4) = u(AP) = ku(A™) = ku(A),
which is our first assertion. Finally, 4 “?is a homomorphic image of A so that
u*(A") £ px(4), whence u(A4) = (A7) = *(4D) £ u*(4). As the opposite
inequality u*(A4) < u(A) is obvious, this completes the proof of the lemma.

ProoF oF THEOREM 8. Let U be the universal ring of A. Then A=U and by
Theorem 3 A, = U,, so that it is enough to prove the theorem for U. If N is the
nilradical of U then U/N has no nonzero nilpotent ideals and, since U satisfies
an identity, N is locally nilpotent ([4]). Since (U/N), = U,/N, has also no nonzero
nilpotet ideals, we have by Lemma 10

w*(UN) = w*(UIN)) = f(U[N),) = kw(U[N) = kp*(U/N).
The proof will thus be completed if we show that p*(U,) = p*(U,/N,) and
p¥U) = p*(U[N). Let F = Q[x,x,,---] be the free ring over Q in the x;, and let
U=#|T =0Q[%,,%,,-], where T is some T-ideal in # and ¥, = x; + T. Suppose
U/N satisfies s", so that in particular si(%,,---,%,) € N. Since N is nil there is a ¢
such that Si(%,,--+,%,)=0. If u,,---,u, are arbitrary elements of U there is a
homomorphism of U into U which maps ¥, — u; and so si(u,. ,u,)=0. This
shows that s, is an identity for U and so p*(U) < u*(U/N). Since the opposite
inequality is obvious, the equality follows. The equality u*(U,) = u*(U,/N,) is
proved similarly using the fact that since N is locally nilpotent, N, is locally nil-
potent and in particular nil. Here we use instead of %,,---, ¥, n generic matrices
X = (x{") whose elements are taken from {¥,,%,,---}. The proof of Theorem §

is now completed.

CorOLLARY 11. Let A, satisfy a power of s,, with n minimal. Then kln and
A satisfies a power of s;,.

This is the converse of the theorem of Procesi and Smali [5].

COROLLARY 12. If A is an M,-ring then k|n.

Indeed, p*(4,) = u(4,) = n and the conclusion now follows from Corollary 11.

COROLLARY 13. Assume that Q is a field. If A is an M, -algebra and B any
algebra then A® B = B, and p*(A ® B) = u*(A) - u*(B).

The first statement follows from Theorem 1, and from this one has by Theorem 8
H*(A ® B) = p*(B,) = nu*(B) = p*(A4) - u*(B).

The following was proved in [2] under different conditions.
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COROLLARY 14. Any ring satisfying an idntity with 1 as one of its coefficients,
satisfies a power of a standard identity.

Proor. It is enough to prove the result for a universal ring U. If N is the nil-
radical of U, then UJN satisfies a standard identity and, as was shown in the
proof of Theorem 8, U satisfies a power of it.

We close this section with an example, showing that in general there is no
connection between p and p*, other than the trivial relation p*(4) < u(4). Let Q
be a field of characteristic 0, ¥ an infinite dimensional vector space over Q with
basis {e;,e,,e;, -}, and let 4 be the Grassman algebra based on V. Then 4 has
a basis consisting of 1 and the products ¢; e;,---e; with i, <i, <--- <, and itis
well known ([4], p. 260) that A4 satisfies the identity [[xy]z] but no standard
identity. Now let A" be the subalgebra of 4 generated by {1,e,,--+,€;,_,}. We
assert that u(A™) = n while p*(A™) = 1. Indeed, each product €, e, in
which two of the e’s are equal must vanish, whence it easily follows that 4 sa-
tisfies 5,,. Since on the other hand we have s,,_ ), e, =, €3, 5)=52,_2(€1, - €2,-2)
=(2n—2)'e, - e,5,_, # 0, the first assertion follows. In order to prove the
second assertion we turn again to the second ring of A, and its nilradical N.
Each prime homomorphic image of U satisfies the identity of degree 3
[[xy]z] and, being an M-ring, it therefore satisfies s, (i.e. it is commutative).
Thus U/N satisfies s, and so U satisfies a power of it, that is, p*(U) = p*(4) = 1.
Note that while p* is kept fixed, u can be made arbitrarily large or co.

Reducting Identities. In this section we consider the following “downwards”
problem: Assuming that A, satisfies a given set of identities, what can we say
about the identities of A? Theorem 8 sclves this problem for the case of powers
of standard identities, but beyond this point the above methods do not} seem to
apply. For instance, if A, is an M -ring we do not know whether 4 is an M-ring.
(This would imply that A is an M, ,-ring.) So we turn to more down-to-earth
methods, which naturally involve some amount of calculations. We assume that
A, satisfies an identity and show two msthods of reducing this identity (in two
different senses) in going down to A. ¢;, will denote the matrix unit with 1 in
its (i,j)-th place and 0 elsewhere. In what follows A will always be a ring with a

unit element.

The first reduction theorem is the following
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THEOREM 15. If A, satisfies an identity of degree n then A,_, satisfies an
identity of degree n — 2.

ReMARK. The theorem still holds if instead of assuming unit element we only
assume that A contains a regular element.

Procr. By the well known linearization process we may assumee that A,
satisfies a homogeneous multilinear identity f(x,---,x,). Write f(xq,-+-,X,)
= g(X1, s Xy 2)Xn—1 X, + B(x(, -+, x,) where g(x;,--,X,_2)X,_1X, is the sum of
all the terms in f which end with x,_ ,x,.. By suitably renaming the x;’s if necessary,
we may suppose that g # 0. Note for later reference that if we happened to start
with f = s,(x,,*,x,) we would get in this process g = s,_»(x;,*",X,_2).

We now intend to show that g(x,,---,x,_,) is an identity for 4,_,. Since g is
multilinear it will suffice to show that g(a,E,,---,a,-,E,_,)=0, for every
substitution of a;€ 4 and E; matrix units of order (k — 1) x (k — 1). The E; will
also be considered as k x k-matrices, by adding k-th row and column of zeroes,
but note that we can then still write g(aE,, --,a,-,E,-,) = ’,‘;il b;;e;; with
b;; € A.

Consider now the following substitution from A, in the identity f(xq,---,X,):

Q=f(a,E,-,a,_,E, 5, e4,ey), where 1 <1<k is arbitrary. Since in each
monomial of h(x, -+ x,) one of x, -+, x, _ , appears to the right of one of x,,_{, x, it
is clear that h(x, :-- x,) vlanishes under the above substitution, and we have:

k-1 k—1
0=0Q=glaE;, -+, a, »E,_j)epey = ( z bijeij)em = X byey.
i=1

ij=1 )
From this we see that b;; =0 fori=1,---,k — 1 and since [ was arbitrary, also for
=1,k —1. Thus g(a,E,, -, a,-,E,_,) = Xb;;e;; =0, which completes the
proof of the theorem.

By a remark we made during the proof of Theorem 15 we have

COROLLARY 16. If A, satisfies s,, then Ay_, satisfies sy, -1, and so A satisfies

Satn—k+1)

COROLLARY 17. If A, satisfies a standard identity then p(A) < u(4) — k+ 1.
A special case of Corollary 16 yields a converse to the Amitsur-Levitzki
theorem [1]:

CoOROLARRYV 18. If A, satisfies s,, then A is commutative.
In what follows we shall sometimes write for short s,(xy,---,x,) =[xy, -, X,].



136 URI LERON AND AMITAI VAPNE Israel J. Math.,

LEmma 19. Let P =[aye;, -, a,e;, te;, 1, b Ey, -~ bE,], where the E; are
matrix units whose both indices are greater than i, and a;, t, bje¢ A. Then
Pz[al,"'9an]teii+1[b1E1’"':brEr]'

Proor. Let Q =[a,.---,a,]te;+1[b1Ey, -, b,E,]. The only nonzero t:rms of
P are among those in which the a,e; appear first in some order, then te;,, and
finally the b;E; in some order. Conversely, each such an arrangement gives rise
to some term of P. Thus, in computing P, it is sufficient to consider those per-
mutations which are a product of a permutation of the a,e; and a permutation
of the b;E;. The terms of P thus obtained are clearly in one-to-one correspondence
with the terms of Q, and corresponding terms are equal and appear with the sign
in their respective sums. Hence the equality of P and Q is established.

We conclude with a second reduction theorem.

' m
THEOREM 20. If A, satisfies s,, then A satisfies st where n = [I_c]

PROOF. Write m = nk + r with 0 £ r < k — 1. Since A, satisfies s,, it certainly

satisfies s, ., —, and so we have for all a;;, t;€ 4,

P=lajeq - a1,€11.11€12,821€55, 02,22, 12€23, 5 T— 1€k~ 11 A1 €kt~

arei] = 0.
On the other hand, applying Lemma 19 several times in succession we get:
P = [ayy, - ay,)tie5[azs, -, azdtreaz - teose - il dirs €]
= [ay. - andtilas - az0t - oo g [ais s Qnlesis
since elements of A commute with the ¢;;. Thus A satisfies the identity
[Xg10 0, XpalVi[X200 s X2, 1Yz Ve1[Xets s Xien)s

which upon specializing y, = -+ = y, ., =1 and x,; = = x;; = X; gives the
identity [x;, -, x,]'.

Note that if A4, satisfies s, then 2u*(4,) <m and by Theorem 8 we have
2u*(A4) £[m/k]=n. Hence A satisfies a power of s, with » < n, whence it can be
easily shown that A4 satisfies a power of s,. Thus the novelty in Theorem 20 is

only in its specifying this power.
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